GAN


今天实现了一个GAN生成动漫头像的算法,训练了半个小时勉强能看出轮廓,如果训练半天的话效果会好一些。

实现环境:tensorflow2, python3.6, PIL(pillow)8.4.0

主要文件如下:

1

anime是训练图片大约5W张

image是生成图片

主干网络

gan.py

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers


class Generator(keras.Model):

    def __init__(self):
        super(Generator,self).__init__()

        self.fc = layers.Dense(3 * 3 * 512)

        self.conv1 = layers.Conv2DTranspose(256,3,3,'valid')
        self.bn1 =  layers.BatchNormalization()

        self.conv2 = layers.Conv2DTranspose(128, 5, 2, 'valid')
        self.bn2 = layers.BatchNormalization()

        self.conv3 = layers.Conv2DTranspose(3, 4, 3, 'valid')
        self.bn3 = layers.BatchNormalization()




    def call(self,inputs,training = None):
        x = self.fc(inputs)
        x = tf.reshape(x,[-1,3,3,512])
        x = tf.nn.leaky_relu(x)
        x = tf.nn.leaky_relu(self.bn1(self.conv1(x),training = training))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
        x = self.conv3(x)
        x = tf.tanh(x)

        return x







        pass




class Discriminator(keras.Model):

    def __init__(self):
        super(Discriminator, self).__init__()
        self.conv1 = layers.Conv2D(64, 5, 3, 'valid')

        self.conv2 = layers.Conv2D(128, 5, 3, 'valid')
        self.bn2 = layers.BatchNormalization()

        self.conv3 = layers.Conv2D(256, 5, 3, 'valid')
        self.bn3 = layers.BatchNormalization()

        self.flattten = layers.Flatten();
        self.fc = layers.Dense(1)


    def call(self,inputs,training = None):
        x = tf.nn.leaky_relu(self.conv1(inputs))

        x = tf.nn.leaky_relu(self.bn2(self.conv2(x),training = training))

        x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))

        x = self.flattten(x)

        logits = self.fc(x)

        return logits








def main():
    d = Discriminator()
    g = Generator()

    x = tf.random.normal([2,64,64,3])
    z = tf.random.normal([2,100])

    prob = d(x)
    print(prob)
    x_hat = g(z)
    print(x_hat.shape)

if __name__ == '__main__':
    main()






gan_train.py

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

import numpy as np
import tensorflow as tf
from tensorflow import keras
from PIL import Image


import glob
from gan import Generator,Discriminator
from dataset import make_anime_dataset


def save_result(val_out, val_block_size, image_path, color_mode):
    def preprocess(img):
        img = ((img + 1.0) * 127.5).astype(np.uint8)
        # img = img.astype(np.uint8)
        return img

    preprocesed = preprocess(val_out)
    final_image = np.array([])
    single_row = np.array([])
    for b in range(val_out.shape[0]):
        # concat image into a row
        if single_row.size == 0:
            single_row = preprocesed[b, :, :, :]
        else:
            single_row = np.concatenate((single_row, preprocesed[b, :, :, :]), axis=1)

        # concat image row to final_image
        if (b+1) % val_block_size == 0:
            if final_image.size == 0:
                final_image = single_row
            else:
                final_image = np.concatenate((final_image, single_row), axis=0)

            # reset single row
            single_row = np.array([])

    if final_image.shape[2] == 1:
        final_image = np.squeeze(final_image, axis=2)
    Image.fromarray(final_image).save(image_path)



def celoss_ones(logits):
    loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=tf.ones_like(logits))

    return tf.reduce_mean(loss)



def celoss_zeros(logits):
    loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=tf.zeros_like(logits))

    return tf.reduce_mean(loss)


def d_loss_fn(generator, discriminator, batch_z, batch_x, is_training):
    fake_image = generator(batch_z ,is_training)
    d_fake_logits = discriminator(fake_image,is_training)
    d_real_logits = discriminator(batch_x,is_training)

    d_loss_real = celoss_ones(d_real_logits)    #真图片的损失
    d_loss_fake = celoss_zeros(d_fake_logits)   #假的图片的损失

    loss = d_loss_fake + d_loss_real

    return loss

def g_loss_fn(generator, discriminator, batch_z, is_training):
    fake_image = generator(batch_z, is_training)
    d_fake_logits = discriminator(fake_image, is_training)
    loss = celoss_ones(d_fake_logits)

    return loss


def main():
    tf.random.set_seed(22)
    np.random.seed(22)
    assert tf.__version__.startswith('2.')

    z_dim = 100
    epochs = 3000000
    batch_size = 64
    learning_rate = 0.002
    is_training = True


    img_path = glob.glob(r'D:\tensorflow学习数据\shuzishibie\GAN\anime\*.jpg')

    dataset ,img_shape ,_ = make_anime_dataset(img_path, batch_size)
    print(dataset,img_shape)

    sample = next(iter(dataset))
    print(sample)


    dataset = dataset.repeat()
    db_iter = iter(dataset)

    generator = Generator()
    generator.build(input_shape = (None,z_dim))
    discriminator = Discriminator()
    discriminator.build(input_shape = (None,64,64,3))

    g_optimizer = tf.optimizers.Adam(learning_rate=learning_rate,beta_1=0.5)
    d_optimizer = tf.optimizers.Adam(learning_rate=learning_rate,beta_1=0.5)

    for epoch in range(epochs):

        batch_z = tf.random.uniform([batch_size, z_dim], minval=-1., maxval=1.) #uniform均匀分布
        batch_x = next(db_iter)

        #train D
        with tf.GradientTape() as tape:
            d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training)
        grads = tape.gradient(d_loss,discriminator.trainable_variables)
        d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))


        with tf.GradientTape() as Tape:
            g_loss = g_loss_fn(generator, discriminator, batch_z, is_training)
        grads = Tape.gradient(g_loss, generator.trainable_variables)
        g_optimizer.apply_gradients(zip(grads, generator.trainable_variables))

        if(epoch % 100 == 0):
            print(epoch,'d-loss',float(d_loss),'g_loss',float(g_loss))
            z = tf.random.uniform([100, z_dim])
            fake_image = generator(z, training=False)
            img_path = os.path.join('image','gan-%d.png'%epoch)
            save_result(fake_image.numpy(), 10, img_path,color_mode='P')





if __name__ == '__main__':
    main()

dataset.py

import multiprocessing

import tensorflow as tf
'''
读取数据(图片)
'''

def make_anime_dataset(img_paths, batch_size, resize=64, drop_remainder=True, shuffle=True, repeat=1):
    @tf.function
    def _map_fn(img):
        img = tf.image.resize(img, [resize, resize])
        img = tf.clip_by_value(img, 0, 255)
        img = img / 127.5 - 1
        return img

    dataset = disk_image_batch_dataset(img_paths,
                                          batch_size,
                                          drop_remainder=drop_remainder,
                                          map_fn=_map_fn,
                                          shuffle=shuffle,
                                          repeat=repeat)
    img_shape = (resize, resize, 3)
    len_dataset = len(img_paths) // batch_size

    return dataset, img_shape, len_dataset


def batch_dataset(dataset,
                  batch_size,
                  drop_remainder=True,
                  n_prefetch_batch=1,
                  filter_fn=None,
                  map_fn=None,
                  n_map_threads=None,
                  filter_after_map=False,
                  shuffle=True,
                  shuffle_buffer_size=None,
                  repeat=None):
    # 设置默认值
    if n_map_threads is None:
        n_map_threads = multiprocessing.cpu_count()
    if shuffle and shuffle_buffer_size is None:
        shuffle_buffer_size = max(batch_size * 128, 2048)  # 将最小缓冲区大小设置为 2048

    # [*]在 `map`/`filter` 之前进行 `shuffle`
    if shuffle:
        dataset = dataset.shuffle(shuffle_buffer_size)

    if not filter_after_map:
        if filter_fn:
            dataset = dataset.filter(filter_fn)

        if map_fn:
            dataset = dataset.map(map_fn, num_parallel_calls=n_map_threads)

    else:  # [*] this is slower
        if map_fn:
            dataset = dataset.map(map_fn, num_parallel_calls=n_map_threads)

        if filter_fn:
            dataset = dataset.filter(filter_fn)

    dataset = dataset.batch(batch_size, drop_remainder=drop_remainder)

    dataset = dataset.repeat(repeat).prefetch(n_prefetch_batch)

    return dataset


def memory_data_batch_dataset(memory_data,
                              batch_size,
                              drop_remainder=True,
                              n_prefetch_batch=1,
                              filter_fn=None,
                              map_fn=None,
                              n_map_threads=None,
                              filter_after_map=False,
                              shuffle=True,
                              shuffle_buffer_size=None,
                              repeat=None):
    """Batch dataset of memory data.

    Parameters
    ----------
    memory_data : nested structure of tensors/ndarrays/lists

    """
    dataset = tf.data.Dataset.from_tensor_slices(memory_data)
    dataset = batch_dataset(dataset,
                            batch_size,
                            drop_remainder=drop_remainder,
                            n_prefetch_batch=n_prefetch_batch,
                            filter_fn=filter_fn,
                            map_fn=map_fn,
                            n_map_threads=n_map_threads,
                            filter_after_map=filter_after_map,
                            shuffle=shuffle,
                            shuffle_buffer_size=shuffle_buffer_size,
                            repeat=repeat)
    return dataset


def disk_image_batch_dataset(img_paths,
                             batch_size,
                             labels=None,
                             drop_remainder=True,
                             n_prefetch_batch=1,
                             filter_fn=None,
                             map_fn=None,
                             n_map_threads=None,
                             filter_after_map=False,
                             shuffle=True,
                             shuffle_buffer_size=None,
                             repeat=None):
    """Batch dataset of disk image for PNG and JPEG.

    Parameters
    ----------
        img_paths : 1d-tensor/ndarray/list of str
        labels : nested structure of tensors/ndarrays/lists

    """
    if labels is None:
        memory_data = img_paths
    else:
        memory_data = (img_paths, labels)

    def parse_fn(path, *label):
        img = tf.io.read_file(path)
        img = tf.image.decode_png(img, 3)  # fix channels to 3
        return (img,) + label

    if map_fn:  # fuse `map_fn` and `parse_fn`
        def map_fn_(*args):
            return map_fn(*parse_fn(*args))
    else:
        map_fn_ = parse_fn

    dataset = memory_data_batch_dataset(memory_data,
                                        batch_size,
                                        drop_remainder=drop_remainder,
                                        n_prefetch_batch=n_prefetch_batch,
                                        filter_fn=filter_fn,
                                        map_fn=map_fn_,
                                        n_map_threads=n_map_threads,
                                        filter_after_map=filter_after_map,
                                        shuffle=shuffle,
                                        shuffle_buffer_size=shuffle_buffer_size,
                                        repeat=repeat)

    return dataset

完整项目链接:

链接:https://pan.baidu.com/s/1QXzTmuuQdGTC9ZQWnyqx_g
提取码:hd53

21-11-4还有20天到期,到期可以联系qq获取

包含训练集。

完结撒花!!!

tu


文章作者: HuXiao
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 HuXiao !
评论
  目录