resnet识别cifar100
resnet.py文件夹放入
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from tensorflow import keras
import tensorflow as tf
from tensorflow.keras import layers,optimizers,datasets,Sequential
class BasicBlack(layers.Layer):
def __init__(self,filter_num,stride = 1):
super(BasicBlack,self).__init__()
self.conv1 = layers.Conv2D(filter_num,(3,3),strides=stride,padding='same')
self.bn1 = layers.BatchNormalization()
self.relu = layers.Activation('relu')
self.conv2 = layers.Conv2D(filter_num, (3, 3), strides=1, padding='same')
self.bn2 = layers.BatchNormalization()
if(stride != 1):
self.downsample = Sequential()
self.downsample.add(layers.Conv2D(filter_num,(1,1),strides=stride))
else:
self.downsample = lambda x:x
def call(self,inputs,training=None):
out = self.conv1(inputs)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
identity = self.downsample(inputs)
output = layers.add([out,identity])
output = self.relu(output)
return output
class Restnet(keras.Model):
def __init__(self,layer_dims,number_classes = 100):
super(Restnet, self).__init__()
self.stem = Sequential([layers.Conv2D(64,(3,3),strides=(1,1)),
layers.BatchNormalization(),layers.Activation('relu'),
layers.MaxPool2D(pool_size=(2,2),strides=(1,1),padding='same')
])
self.layer1 = self.build_restblock(64,layer_dims[0])
self.layer2 = self.build_restblock(128, layer_dims[1],stride=2)
self.layer3 = self.build_restblock(256, layer_dims[2], stride=2)
self.layer4 = self.build_restblock(512, layer_dims[3], stride=2)
self.avgpool = layers.GlobalAveragePooling2D()
self.fc = layers.Dense(number_classes)
def call(self,inputs,training=None):
x = self.stem(inputs,training=training)
x = self.layer1(x,training = training)
x = self.layer2(x,training = training)
x = self.layer3(x,training = training)
x = self.layer4(x,training = training)
x = self.avgpool(x)
x = self.fc(x)
return x
def build_restblock(self,filter_num,blocks,stride = 1):
res_blocks = Sequential()
res_blocks.add(BasicBlack(filter_num,stride))
for _ in range(1,blocks):
res_blocks.add(BasicBlack(filter_num, stride=1))
return res_blocks
#resnet18网络参数
def resnet18():
return Restnet([2,2,2,2])
#resnet34参数,其他resnet可以自己构造参数
def resnet34():
return Restnet([3, 4, 6, 3])
train.py放入
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
from tensorflow.keras import layers,optimizers,datasets,Sequential
from resnet import resnet18
tf.random.set_seed(2345)
#数据预处理函数
def preprocess(x,y):
x = tf.cast(x,dtype=tf.float32) / 255
y = tf.cast(y,dtype=tf.int32)
return x,y
(x,y) ,(x_test,y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y,axis=1)
y_test = tf.squeeze(y_test,axis=1)
print(x.shape,x_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x,y));
train_db = train_db.shuffle(1000).map(preprocess).batch(16);
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test));
test_db = test_db.map(preprocess).batch(16);
sample = next(iter(train_db))
print('sample:',sample[0].shape,sample[1].shape)
sample = next(iter(test_db))
print('test_dbsample:',sample[0].shape,sample[1].shape)
def main():
model = resnet18()
model.build(input_shape = (None,32,32,3))
optimizer = optimizers.Adam(lr=1e-3)
for epoch in range(50):
for step, (x, y) in enumerate(train_db):
#print(x.shape,y.shape)
with tf.GradientTape() as tape:
logits = model(x)
y_hot = tf.one_hot(y,depth=100)
#loss
loss = tf.losses.categorical_crossentropy(y_hot,logits,from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss,model.trainable_variables)
optimizer.apply_gradients(zip(grads,model.trainable_variables))
if(step % 100 ==0):
print(epoch,step,"loss: ",float(loss))
total_sum = 0
total_currect = 0
for x,y in test_db:
logits = model(x)
prob = tf.nn.softmax(logits,axis=1)
pred = tf.argmax(prob,axis=1)
pred = tf.cast(pred ,dtype=tf.int32)
correct = tf.cast(tf.equal(pred,y),dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_sum += x.shape[0]
total_currect +=int(correct)
acc = total_currect / total_sum
print('acc: ',acc)
if __name__ == '__main__':
main()
完结撒花!!!